Skip to content

Getting Started

Quick Start

Get up and running in 5 minutes with Azure OpenAI!

Prerequisites

  • Python 3.13 or higher (required - earlier versions are not supported)
  • Azure OpenAI API credentials
  • uv package manager

AI-Assisted Set Up (give this prompt to your preferred coding agent)

WARNING: Audit ALL Azure CLI commands!

Follow all steps in [this guide](https://blog.insight-services-apac.dev/ingenious/guides/complete-azure-deployment/).

- Deploy only required resources at minimal cost.
- Use a new resource group: **<your-new-rg-name>**.
- For the SQL Server SKU choose Basic - 5 DTUs
- Azure CLI access is available.

5-Minute Setup

  1. Install and Initialize:

    # Navigate to your desired project directory first
    cd /path/to/your/project
    
    # Set up the uv project
    uv init
    
    # Choose installation based on features needed
    uv add "ingenious[azure-full]" # Recommended: Full Azure integration (core, auth, azure, ai, database, ui)
    # OR
    uv add "ingenious[standard]" # for local testing: includes SQL agent support (core, auth, ai, database)
    
    # Initialize project in the current directory
    uv run ingen init
    

  2. Configure Credentials: Create a .env file with your Azure OpenAI credentials:

    # Create .env file in current directory
    touch .env
    
    # Edit .env file with your actual credentials
    

    Required configuration (add to .env file):

    # Model Configuration (only INGENIOUS_* variables are used by the system)
    INGENIOUS_MODELS__0__MODEL=gpt-4.1-nano
    INGENIOUS_MODELS__0__API_TYPE=rest
    INGENIOUS_MODELS__0__API_VERSION=2024-12-01-preview
    INGENIOUS_MODELS__0__DEPLOYMENT=your-gpt4.1-nano-deployment-name
    INGENIOUS_MODELS__0__API_KEY=your-actual-api-key-here
    INGENIOUS_MODELS__0__BASE_URL=https://your-resource.openai.azure.com/
    
    # Basic required settings
    INGENIOUS_CHAT_SERVICE__TYPE=multi_agent
    INGENIOUS_CHAT_HISTORY__DATABASE_TYPE=sqlite
    INGENIOUS_CHAT_HISTORY__DATABASE_PATH=./.tmp/chat_history.db
    INGENIOUS_CHAT_HISTORY__MEMORY_PATH=./.tmp
    
    # Optional: Authentication settings (enabled by default)
    # INGENIOUS_WEB_CONFIGURATION__ENABLE_AUTHENTICATION=false  # To disable auth
    

  3. Validate Configuration:

    uv run ingen validate  # Check configuration before starting
    

    If validation fails with port conflicts:

    # Check if validation passes with different port
    INGENIOUS_WEB_CONFIGURATION__PORT=8001 uv run ingen validate
    
    # Or update your .env file before validating:
    echo "INGENIOUS_WEB_CONFIGURATION__PORT=8001" >> .env
    uv run ingen validate
    

    ⚠️ BREAKING CHANGE: Ingenious now uses pydantic-settings for configuration via environment variables. Legacy YAML configuration files (config.yml, profiles.yml) are no longer supported and must be migrated to environment variables with INGENIOUS_ prefixes. Use the migration script:

    uv run python scripts/migrate_config.py --yaml-file config.yml --output .env
    uv run python scripts/migrate_config.py --yaml-file profiles.yml --output .env.profiles
    

  4. Start the Server:

    # Start server on port 8000 (recommended for development)
    uv run ingen serve --port 8000
    
    # Additional options:
    # --host 0.0.0.0         # Bind host (default: 0.0.0.0)
    # --port                 # Port to bind (default: 80 or $WEB_PORT env var)
    # --config config.yml    # Legacy config file (deprecated - use environment variables)
    # --profile production   # Legacy profile (deprecated - use environment variables)
    

  5. Verify Health:

    # Check server health
    curl http://localhost:8000/api/v1/health
    

  6. Test with Core Workflows:

    Create test files to avoid JSON escaping issues:

    # Create test files for each workflow
    echo '{"user_prompt": "Analyze this customer feedback: Great product", "conversation_flow": "classification-agent"}' > test_classification.json
    echo '{"user_prompt": "Search for documentation about setup", "conversation_flow": "knowledge-base-agent"}' > test_knowledge.json
    echo '{"user_prompt": "Show me all tables in the database", "conversation_flow": "sql-manipulation-agent"}' > test_sql.json
    
    # Test each workflow
    curl -X POST http://localhost:8000/api/v1/chat -H "Content-Type: application/json" -d @test_classification.json
    curl -X POST http://localhost:8000/api/v1/chat -H "Content-Type: application/json" -d @test_knowledge.json
    curl -X POST http://localhost:8000/api/v1/chat -H "Content-Type: application/json" -d @test_sql.json
    

Expected Responses: - Successful classification-agent response: JSON with message analysis and categories - Successful knowledge-base-agent response: JSON with relevant information retrieved (may indicate empty knowledge base initially) - Successful sql-manipulation-agent response: JSON with query results or confirmation

If you see error responses, check the troubleshooting section above or the detailed troubleshooting guide.

That's it! You should see a JSON response with AI analysis of the input.

Next Steps - Test Additional Workflows:

  1. Test bike-insights Workflow (Requires ingen init first):

    The bike-insights workflow is part of the project template and must be initialized first:

    # First initialize project to get bike-insights workflow
    uv run ingen init
    
    # Create bike-insights test data file
    # IMPORTANT: bike-insights requires JSON data in the user_prompt field (double-encoded JSON)
    # Method 1: Use printf for precise formatting (recommended)
    printf '%s\n' '{
      "user_prompt": "{\"revision_id\": \"test-v1\", \"identifier\": \"test-001\", \"stores\": [{\"name\": \"Test Store\", \"location\": \"NSW\", \"bike_sales\": [{\"product_code\": \"MB-TREK-2021-XC\", \"quantity_sold\": 2, \"sale_date\": \"2023-04-01\", \"year\": 2023, \"month\": \"April\", \"customer_review\": {\"rating\": 4.5, \"comment\": \"Great bike\"}}], \"bike_stock\": []}]}",
      "conversation_flow": "bike-insights"
    }' > test_bike_insights.json
    
    # Method 2: Alternative using echo (simpler but watch for shell differences)
    echo '{
      "user_prompt": "{\"revision_id\": \"test-v1\", \"identifier\": \"test-001\", \"stores\": [{\"name\": \"Test Store\", \"location\": \"NSW\", \"bike_sales\": [{\"product_code\": \"MB-TREK-2021-XC\", \"quantity_sold\": 2, \"sale_date\": \"2023-04-01\", \"year\": 2023, \"month\": \"April\", \"customer_review\": {\"rating\": 4.5, \"comment\": \"Great bike\"}}], \"bike_stock\": []}]}",
      "conversation_flow": "bike-insights"
    }' > test_bike_insights.json
    
    # Method 3: If heredoc is preferred, ensure proper EOF placement
    cat > test_bike_insights.json << 'EOF'
    {
    "user_prompt": "{\"revision_id\": \"test-v1\", \"identifier\": \"test-001\", \"stores\": [{\"name\": \"Test Store\", \"location\": \"NSW\", \"bike_sales\": [{\"product_code\": \"MB-TREK-2021-XC\", \"quantity_sold\": 2, \"sale_date\": \"2023-04-01\", \"year\": 2023, \"month\": \"April\", \"customer_review\": {\"rating\": 4.5, \"comment\": \"Great bike\"}}], \"bike_stock\": []}]}",
    "conversation_flow": "bike-insights"
    }
    EOF
    
    # Test bike-insights workflow
    curl -X POST http://localhost:8000/api/v1/chat -H "Content-Type: application/json" -d @test_bike_insights.json
    

    Expected bike-insights response: JSON with comprehensive bike sales analysis from multiple agents (fiscal analysis, customer sentiment, summary, and bike lookup).

Important Notes: - Core Library Workflows (classification-agent, knowledge-base-agent, sql-manipulation-agent) are always available and accept simple text prompts - Template Workflows like bike-insights require JSON-formatted data with specific fields and are only available after running ingen init - The bike-insights workflow is the recommended "Hello World" example for new users

Workflow Categories

Insight Ingenious provides multiple conversation workflows with different configuration requirements:

Core Library Workflows (Always Available)

These workflows are built into the Ingenious library and available immediately:

  • classification-agent - Simple text classification and routing to categories (minimal config required)
  • knowledge-base-agent - Search and retrieve information from knowledge bases (requires Azure Search or uses local ChromaDB by default)
  • sql-manipulation-agent - Execute SQL queries based on natural language (requires Azure SQL or uses local SQLite by default)

Note: Core workflows support both hyphenated (classification-agent) and underscored (classification_agent) naming formats for backward compatibility.

Template Workflows (Created by ingen init)

These workflows are provided as examples in the project template when you run ingen init:

  • bike-insights - Comprehensive bike sales analysis showcasing multi-agent coordination (ONLY available after ingen init - not included in the core library)

Important: The bike-insights workflow is NOT part of the core library. It's a template example that's created when you initialize a new project with ingen init. This is the recommended "Hello World" example for learning how to build custom workflows.

Troubleshooting

For common issues like port conflicts, configuration errors, or workflow problems, see the detailed troubleshooting guide.

Documentation

For detailed documentation, see the docs.

Contributing

Contributions are welcome! Please see CONTRIBUTING.md for guidelines.

License

This project is licensed under the terms specified in the LICENSE file.